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Introduction

Equivariant BRST gauge-fixing first proposed by Schaden for SU(2).

[Phys Rev D, Vol 59, 014508]

Later, expanded to general SU(N) with eBRST & anti-eBRST by
Golterman & Shamir.

[Phys Rev D, Vol 70, 094506]

Basic idea → gauge-fix in the coset leaving an Abelian subgroup
invariant.

Goals :

ê Avoid no-go theorem [Neuberger]

ê Prescription to study SU(N) chiral gauge theories on the lattice.

Our ongoing work

Numerical study of phase diagram of the pure SU(2) gauge theory,
gauge-fixed in the coset SU(2)/U(1) with a resulting eBRST symmetry.
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eBRST SU(2)/U(1)

SU(2)/U(1) gauge-fixed Lagrangian in the continuum (integrating out
the auxiliary field b)

Lgf =
1

ξg2
tr(Dµ(A)Wµ)2 + L(2)

gh + ξg2L(4)
gh

L(2)
gh = −2tr(CDµ(A)Dµ(A)C ) + 2tr([Wµ,C ][Wµ,C ])

L(4)
gh = −tr(X̃ 2), X̃ = i{C , C̄}

Action on the lattice

Sgf =
1

ξg2
tr
∑
x

(D−µWxµ)2 − ξg2tr
∑
x

(X̃ 2)

− 2tr
∑
x

([
UxµT3U

†
xµ,D+

µC x

] [
T3,D+

µCx

]
+ iWxµ

{
C x ,D+

µCx

})
where Wxµ = −[UxµT3U

†
xµ,T3] = Wxµ + O(V 2),Ta = σa/2,

lattice covariant derivatives D+
µΦx = UxµΦx+µU

†
xµ − Φx ,

D−µ Φx = Φx − U†x−µ,µΦx−µUx−µ,µ.
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Action on the lattice; Ghost matrix

ê The 4-ghost term is tackled by introducing an auxiliary field ρ ∈ H.

Sgf = κ̃
∑
xα

(D−µWxµ)2α + κ̃
∑
x

ρ2x +
∑
xyαβ

C xαMxα,yβCyβ , κ̃ =
1

2ξg2

The ghost matrix Mxα,yβ = Ωxα,yβ(U) + Rxα,yβ(ρ) is real

ê The ghost matrix is implemented in the HMC algorithm in the
following way.∫

DCDC exp(−CMC ) = detM = |detM| sign(detM)

|detM| can be simulated using HMC by introducing a real
”pseudo-ghost” field ϕ,

|detM| =
√
det(MMT ) =

∫
Dϕ exp

(
−(1/2)ϕT (MMT )−1ϕ

)
.
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Algorithm : Discussions

The partition function :

Z ≡
∫
DUDϕDρ exp

(
−[SW + S ′gf +

1

2
ϕT (MTM)−1ϕ]

)
sign(detM)

Simulate with Z ′ without the sign. Need to track sign of detM.

Stochastic Tunneling HMC (a kind of stochastic deflation) is currently
being tried.

[Phys Rev D 76, 094512 (2007)]

Present simulation with HMC.

We try to explore as much of the phase diagram as possible.
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Reduced model

Gauge transf. : Ux,µ → Uφx,µ = φxUx,µφ
†
x+µ.

The lgdofs φ are explicitly present in Sgf → radially frozen scalar fields.

Z =

∫
DU exp (−SW (U)) Z̃ (U), Higgs picture

where Z̃ (U) =

∫
DCDCDφ exp

(
−[Sgf (Uφ,C ,C )]

)

Apart from eBRST & U(1), local SU(2)R symmetry present.

Ux,µ → gxUx,µg
†
x+µ, φx → φxg

†
x , gx ∈ SU(2)R

Reduced model of the theory is the limit g → 0 or U = 1
⇒ only φ fields and ghosts.

SU(2)R becomes global
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Spontaneous symmetry breaking

From strong coupling and mean field techniques,

ê Due to strong dynamics, SSB takes place in the reduced model as
SU(2)R → U(1).

ê In the full eBRST theory, by a Higgs mechanism, the W1 and W2

gauge fields gain a mass.

ê eBRST is expected to be unbroken with the gauge boson mass
generated being balanced by a ghost mass.

Non-trivial phase diagram may occur.

g∼

β0 ∞

β
∼

0

0
0

∞

∞
∞ g

BA
g∼

β0 ∞

β
∼

0

0
0

∞

∞
∞ g

A B

κ̃ ∝ 1/g̃2 = β̃

A : Usual
confining
phase
B :
Higgs/broken
phase

[Golterman & Shamir, Phys. Rev. D 87, 054501 (2013)]
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Invariance Theorem

Invariance theorem : the expectation values of gauge-invariant
observables obtained from an unfixed theory and an eBRST invariant
gauge-fixed theories are equal, in a finite lattice.

Possibility of interesting physics → break eBRST explicitly by a
symmetry breaking seed.

ê Study SSB and Higgs mechanism

ê Take infinite volume limit

ê Turn off symmetry breaking seed

ê See if new phase appears
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Reduced model [Preliminary results]

Order parameter
Ã = 〈φ†xτ3φx〉 for
SU(2)R → U(1).

Broken phase for range of κ̃.

Ongoing work of study of
spectrum.
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Invariance theorem [Preliminary result]

eBRST symmetry also allows a mass term, which helps in CG inversion

Sm = m2
∑
x

[
− 4 κ̃ tr(Uxµτ3U

†
xµτ3) + 2 tr(C xCx)

]

Validation of invariance theorem with mass term
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Invariance theorem [Preliminary result]
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Ghost propagator [Preliminary result]
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W propagator is still noisy
and need more statistics.
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Conclusion

ê The eBRST scheme of gauge-fixing is a very novel approach to
address the problem of non-abelian lattice chiral gauge theories.
Present work is only with pure gauge. We intend to study the phase
diagram which emerges from such theories.

ê Coding is a challenging task since keeping track of the sign of the
determinant will be a very difficult thing as it essentially boils down
to tracking the zero crossing of the smallest eigenvalues. We intend
to use some kind of deflation techniques with HMC.

ê Ultimately, the abelian part of the theory has to be gauge-fixed by
the HD action described in the previous talk.
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